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Abstract. In this paper we present the results of a detailed experimental investigation of
the magnetic excitations in the spin-1

2 Heisenberg antiferromagnet CuWO4. Inelastic neutron
scattering measurements made using a triple-axis spectrometer were performed in the low-
temperature ordered phase and also briefly in the high-temperature phase at Brookhaven National
Laboratory. The excitations in the ordered phase are compared to a spin-wave model and two
possible sets of exchange paths are deduced, both of which provide good fits to the data. In both
models CuWO4 consists of weakly coupled alternating one-dimensional chains running in the
[2, −1, 0] direction. A calculation of the spin-wave intensities was also performed using the fitted
exchange constants and agreement was found with the observed intensities. In the ordered phase,
CuWO4 has an energy gap at the zone centre and the excitations are well defined. Above the
transition temperature constant-wavevector scans at the antiferromagnetic lattice points suggest
the existence of a continuum of excitations.

1. Introduction

There has been a recent resurgence of interest in low-dimensional, spin-1
2 Heisenberg

antiferromagnets. One reason for this is that high-Tc superconductors have been found
to contain planes ofS = 1

2 copper ions and it is thought that understanding the magnetism
in such systems may lead to an understanding of superconductivity. Another reason for
the interest is that these antiferromagnets display interesting phenomena not found in
three-dimensional magnets or ones with larger spin values. KCuF3 is a good example
of a spin-12 one-dimensional Heisenberg antiferromagnet. Spin-wave theory, which is the
conventional theory for magnetic systems, predicts excitations which are well defined in
energy; experiments on KCuF3 however reveal that the excitations form a continuum [1].
In order to account fully for the strong quantum fluctations in KCuF3 complex methods
involving field theory have been introduced [2]. Another interesting low-dimensional
antiferromagnet is CuGeO3, which has alternating exchanges along the chain direction
due to a spin–Peierls distortion. The excitations of CuGeO3 display an energy gap at
the zone centre in the spin–Peierls phase, and recent measurements indicate a continuum
of excitations [3]. Neither of these features is predicted by spin-wave theory and at present
there is no exact solution of the excitations in alternating chain systems.

CuWO4 is a relatively little-studied crystal and its magnetic excitations have not been
previously investigated by the technique of inelastic neutron scattering. Susceptibility
measurements [4, 5], however, strongly suggest that it may exhibit low-dimensional
magnetism. The susceptibility profile displays a broad maximum at temperatures around
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90 K, far above the Ńeel temperature of 24 K; this indicates that CuWO4 has magnetic
short-range order well above its long-range ordering temperature as is characteristic of
low-dimensional systems. Until now two groups of authors have made suggestions about
the exchange interactions in CuWO4. Doumercet al [5] measured the susceptibility of a
powdered sample and fitted it to the numerical calculations of Duffy and Barr [6], where the
susceptibility of an infinite alternating chain is obtained by extrapolation from simulations
of finite chains with lengths of up to ten spins. Forsythet al [7] deduced the exchange
interactions in CuWO4 by examining the crystal structure; they concluded that there should
be alternating chains in thec direction weakly coupled in theb direction.

In this paper we describe inelastic neutron scattering measurements of the excitations in
the ordered phase of CuWO4 and deduce the magnitude and direction of the exchanges. The
rest of the paper is organized as follows: section 2 describes the experimental arrangement
and section 3 the measurements performed. Section 4 is the analysis section where spin-
wave theory is developed for a four-sublattice crystal (details are given in the appendix)
and the results of fitting the excitations to this model are explained. Then in section 5 the
results are discussed and the paper ends with a summary in section 6.

2. Experimental details

The structure of CuWO4 is similar to that of the monoclinic family of Mn, Co, Fe and
Ni tungstates but the action of a strong Jahn–Teller distortion is responsible for lowering
its symmetry to triclinic, with space groupP 1̄ [8]. The lattice parameters at 15 K are
a = 4.694(1), b = 5.830(1) andc = 4.877(1) Å and the unit cell angles are(α = 91.64(1),
β = 92.41(2) and γ = 82.91(1)◦ [7]. The Cu2+ ions in CuWO4 have spin-12 and are
responsible for the magnetic features of this compound. Figure 1 is a diagram of the
chemical unit cell. It shows that there are two Cu2+ ions within each unit cell and they are
related to each other by inversion symmetry. CuWO4 exhibits long-range antiferromagnetic
order below its transition temperature of 24.0 K [5]. The magnetic propagation vector has
been measured by powder neutron diffraction [9] and single-crystal measurements [10] and
is found to be (0.5, 0, 0) where the reciprocal lattice vectors area∗ = 2π(b×c)/(a ·b×c),
b∗ = 2π(c × a)/(a · b × c) andc∗ = 2π(a × b)/(a · b × c). The two Cu2+ ions within the
unit cell align ferromagnetically at the spherical polar anglesθ = 121◦ andφ = 52◦ where
the polar axis is taken as being parallel toc, andφ (is measured fromc–a∗ plane [7]. This
direction coincides with the axis of elongation of the Jahn–Teller distortion.

A batch of CuWO4 crystals was grown in the Clarendon Laboratory, Oxford, using the
flux growth technique where the flux of Li2WO4 was used. The relevant phase diagram is
given in [11]. The starting materials CuO, WO3 and Li2CO3 were heated to 1000◦C for
10 h. The mixture was then cooled at a rate of 2◦C h−1 to a temperature of 900◦C and
at 0.5 ◦C h−1 to a temperature of 800◦C; after this cooling was continued at a faster rate.
The crystal used for our measurements had a volume of 20× 20× 8 mm3 and consisted of
two crystallites, one being half the size of the other. The two crystallites share a common
face (0, 1, 0) and are related to each other by a 180◦ rotation about theb∗ axis. The mosaic
spread of the larger crystallite was 20′.

The inelastic neutron scattering measurements were made using the triple-axis
spectrometers H7 and H8 at the High Flux Beam Reactor in Brookhaven National
Laboratory, New York. The sample was mounted on the cold finger of a closed cycle
refrigerator which could control the sample temperature to an accuracy of±0.1 K above
temperatures of 9 K. Pyrolitic graphite crystals were used for the monochromator and
analyser to select neutron energies and wavelengths. For most of the experiment the
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Figure 1. The chemical unit cell of CuWO4.

final neutron energy was fixed at 14.7 meV and a pyrolitic graphite filter was placed
after the sample to eliminate neutrons scattered by higher-order Bragg reflections in the
monochromator. Collimators were used to determine the resolution and a typical collimation
was 20′–20′–40′–40′ from reactor to detector. This arrangement provided us with a suitable
energy range for measuring the excitations in thea∗–b∗ and a∗–c∗ planes of the crystal.
For low-energy measurements a fixed incident neutron energy of 5 meV was used with a
beryllium filter before the sample; this provided the high resolution required for a detailed
investigation of the energy gap at the antiferromagnetic lattice points. All measurements
were done in terms of monitor counts rather than time, so that the data were not affected
by fluctations in the production of neutrons.

3. Measurements and results

Detailed measurements were made of the magnetic excitations in CuWO4 at a temperature
of 11 K, well below the ordering temperature ofTN = 24.0 K. Constant-wavevector and
constant-energy scans were performed about the antiferromagnetic lattice points (1.5, 0, 0),
(0.5, 1, −1) and (0.5, 1, 0) in two scattering planes, thea∗–b∗ and a∗–c∗ planes, with a
typical counting time of 6 min/data point. The neutron scattering data revealed spin-wave
modes with well defined energies as shown in figure 2. The reasons that several peaks are
often observed are firstly because there are two crystallites with different orientations and
also because each crystallite produces two modes, a consequence of having four magnetic
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Figure 2. A constant-wavevector scan at (1.5, −0.5, 0) using a counting time∼ 570 s/data
point. The peaks have been fitted to Gaussians and the extracted peak positions have been used
as data points in theb∗ dispersion, (figure 3(a)).

ions in the magnetic unit cell, as explained in section 4. Figure 2 shows a constant-
wavevector scan at (1.5, 0.5, 0). The peak at 16.59 meV has been identified as originating
from the ‘acoustic’ mode of the larger crystallite and the peak at 21.12 meV from the
‘optic’ mode of the larger crystallite; the positions of these peaks have been used as data
points in theb∗ dispersion (figure 3(a)). Our measurements concentrated on the lower-
energy acoustic mode of the larger crystallite, which we were able to identify because at
the antiferromagnetic lattice points it produces the strongest scattering and has the lowest
energy. This mode was followed outwards from the zone centre and mapped out in a
large number of different high-symmetry directions. Gaussians were fitted to these scans to
extract the peak positions and the dispersion relations for the excitations were built up as
functions of wavevector. Some of the dispersions are shown in figures 3(a)–(e) where the
dispersion direction quoted is that of the larger crystallite.

The errors shown in figures 3(a)–(e) are simply the errors in the peak positions from
fitting the Gaussians. The best way to perform the peak fitting is in fact to fit the convolution
of the four-dimensional resolution function with the spin-wave dispersion to the data; we
did not do this because it requires a prior knowledge of the mode energies and dispersion
relations in that region of reciprocal space. Simulations show that the resolution convolution
can make the line-shape non-Gaussian and even asymmetric as is the case in some of our
scans, thus fitting the profiles to Gaussians rather than the true line-shape can introduce
small systematic errors. Simulations also show that in some cases the resolution can have
the effect of shifting, by a small amount, the observed peak energy from the energy of the
mode producing it; again this is not taken into account when fitting Gaussians. Another
problem can arise when two modes come close to each other: their combined effect may
produce just one peak in the data whose position corresponds to an energy in between
that of the modes. The method we have used of fitting all the peaks to Gaussians to find
the energies and errors treats all the scans consistently but underestimates the errors. A
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reasonable estimation of the true errors is given by the scatter of the data points about the
mean dispersion position.

The acoustic mode has an energy gap of 1.4 meV (T = 13 K) at the zone centre and its
energy increases to 17 meV at the zone boundary in thea∗ andb∗ directions but to a lower
energy of 8 meV in thec∗ direction. The optic mode lies above the acoustic mode within
an energy range of 10–22 meV. The data indicate that CuWO4 has a direction of strong
exchange in the [2, −1, 0] direction figure 3(c), where the mode energies are large, while
dispersions perpendicular to this direction are relatively low in energy (figures 3(d) and
(e)), suggesting that the exchanges in these directions are weaker. At the antiferromagnetic
lattice points investigated the intensity of the acoustic mode is at its greatest while the optic
mode is too weak to be observed. When the modes are followed outwards in wavevector
from the zone centre, large intensity changes are found in them with the optic mode often
strongest at the zone boundary.

The temperature dependence of the order parameter for the antiferromagnetic phase
transition in CuWO4 was measured to determine the transition temperature. Figure 4 shows a
graph of the integrated counts from the magnetic Bragg peak at (2.5, 0, 0) as the temperature
was varied from 13 to 26 K. This peak was chosen because it is weak with a maximum of
1515 counts s−1 at 13 K. The power lawy = A(TN −T )2β was fitted to the data in the region
close to the transition temperature between 21 and 26 K; in this region all the count rates
are less than 1000 counts per second and therefore the intensities are unlikely to be affected
by extinction. The exponentβ = 0.214± 0.022 was extracted from the best fit, along with
the Ńeel temperatureTN = 24.00± 0.03 K. The value of the transition temperature is in
agreement with that of Doumercet al [5] but is higher than the 23.00± 0.02 K found by
Forsyth et al [7]. The exponentβ does not match the critical exponents of any simple
theoretical model; it lies between the value of 0.34 for the order parameter of a three-
dimensional magnet where the spins interact through Heisenberg exchange and the 0.125
expected for a two-dimensional Ising system, suggesting that the exchange interactions in
CuWO4 cause a complex cross-over from perfect three-dimensional behaviour.

The temperature dependence of the energy gap at the zone centre was investigated.
In these measurements a fixed incident neutron energy of 5 meV was used for high
resolution. Figure 5 shows two constant-wavevector scans at the antiferromagnetic lattice
point (0.5, 0, 0) for the temperatures 22 and 26K. At 22 K there is a well defined mode
with an energy of 0.94 meV, well separated from the elastic Bragg peak which has a peak
intensity of 5757 counts s−1. By 26 K the Bragg peak has been replaced by a broad band
of scattering which has a maximum of 1.82 counts s−1 at E = 0.0 meV and extends up
in energy up to 1.5 meV; the energy gap is no longer apparent at this temperature. Below
TN the position of the energy gap was extracted from the scans. The full four-dimensional
convolution of the resolution ellipsoid (calculated using the method of Cooper and Nathans
[12]), with a spin-wave dispersion corresponding to that measured in this paper for CuWO4

but where the size of the energy gap at the zone centre could be varied, was fitted to the
data. In this calculation the usual 1/ω spin-wave structure factor has been included, and the
amount of thermal occupation of the energy mode at the temperatures of the scans is also
taken into account. Details of the program used to calculate the resolution convolution can
be found in [13]. The solid line in the 22 K graph (figure 5) is the fit to the data: it gives
a somewhat narrower peak than is measured, indicating that at this temperature a degree
of broadening is found in the energy mode. Figure 6 shows the energy gap as a function
of temperature: its position decreases in energy as the temperature is increased; however
it is unclear whether the gap tends to zero at the transition temperature or exists aboveTN

where it would be obscured by the quasi-elastic scattering.
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Figure 3. The spin-wave model fit to the data is shown in the bottom plots, where the dispersion
direction given is that for the larger crystallite. The top right-hand graphs show the calculated
intensities of the modes using the fitted parameters. The top left-hand plots show the fit of a
model of uncoupled dimerized chains to the acoustic mode.

The solid line in figure 5 for the 26 K data is a simulation of the scattering expected
from a spin-wave mode with no energy gap. The calculation is performed (as for the
scans belowTN ) by convolving the four-dimensional resolution ellipsoid with a spin-wave
dispersion whose energy profile corresponds to that found in CuWO4 in the ordered phase,
but where the energy gap has been set to zero. As can been seen from the figure the peak in
the calculated scattering intensity occurs at an energy of 0.4 meV. This and the asymmetric
line-shape are due to the elongation of the vertical component of the resolution ellipsoid
which enhances scattering at higher energies. The failure of the simulation suggests that
the mode we measured at 26 K either has a structure factor which deviates from linear
spin-wave theory or has a line-shape that is not well defined at this temperature.

We also briefly studied the excitations aboveTN . The quasi-elastic scattering was
measured in the two-axis configuration at 35 K in various directions in thea∗–b∗ plane. The
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Figure 3. (Continued)

results show streaks of scattering in the [0.5, 1, 0] direction: this suggests the existence of
short-range order above the transition temperature in the [2, −1, 0] direction. The excitations
were also measured at 35 K in thea∗ direction where a mode was found with energy similar
to that of the acoustic mode belowTN but less well defined and of lower intensity.

4. Analysis

When CuWO4 orders antiferromagnetically the unit cell is doubled in thea direction,
leading to four Cu ions in each magnetic unit cell. Table 1 gives the positions of these ions
(labelled 1–4) as fractions of the lattice parameters of the chemical unit cell [7] and the
arrows indicate their relative ordering directions. Our aim was to discover which exchange
interactions give rise to this ordering by studying the magnetic excitations.

There are many possible exchange paths in CuWO4, because there are four Cu ions in
the magnetic unit cell and all of the exchange interactions among them must be considered.
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Figure 3. (Continued)

Table 1. The positions of the Cu ions within the magnetic unit cell are given as fractions of
the lattice parameters of the chemical unit cell [7]. The arrows indicate the relative ordering of
each Cu in the antiferromagnetic phase.

Position of ionRCu = la + mb + nc

Copper ion l m n Spin direction

Cu 1 0.495 37 0.659 42 0.245 24 ↑
Cu 2 0.504 63 0.340 58 0.754 76 ↑
Cu 3 1.495 37 0.659 42 0.245 24 ↓
Cu 4 1.504 63 0.340 58 0.754 76 ↓

Further, the low crystal symmetry means that there are a large number of independent
exchange interactions. We have divided the possible interactions in CuWO4 into four
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Figure 3. (Continued)

categories according to which ions are coupled, as listed in the first column of table 2. For
example, the exchange represented by the categoryJb[ijk] links Cu 1 type ions to Cu 2 type
ions and Cu 3 ions to Cu 4 ions. The vector [i, j, k] gives the separation of the magnetic
cells linked by the exchange where, since the indices are over the lattice parameters of
the chemical cell, the indexi changes in steps of two to correspond to the magnetic unit
cell. Each exchange constant describes several exchange paths; for example if there is an
exchangeJa[010] linking the Cu 1 ions to the Cu 1 ions displaced one magnetic cell away in
theb direction, then by symmetry the same exchange also describes the interaction between
the Cu 2 ions and the Cu 2 ions displaced one magnetic unit cell away in theb direction,
etc. The second column of table 2 lists the paths associated with each exchange constant.
Finally, we have assumed that the exchange interactions linking Cu ions whose spins are
aligned parallel to each other are ferromagnetic while those linking Cu ions whose spins
are antiparallel are antiferromagnetic. Some example exchange paths in thea–b plane are
illustrated in figure 7.
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Figure 3. (Continued)

The general magnetic Hamiltonian for CuWO4 can written as the sum of the
Hamiltonians for each exchange category,

H =
∑

r

∑
i,j,k

(Ha r,[ijk] + Hb r,[ijk] + Hc r,[ijk] + Hd r,[ijk]) (1)

whereHa r,[ijk] is the Hamiltonian involving the exchangesJa[ijk] and the sum overr is
over all the magnetic unit cells in the crystal. The quantitiesHa r,[ijk] andHb r,[ijk] etc can
be written explicitly in terms of the exchange interactions and spin operators as

Ha r,[ijk] = Ja[ijk]([S1,r · S1,(r+[i,j,k])] + S2,r · S2,(r+[i,j,k])] + [S3,r · S3,(r+[i,j,k])]
+[S4,r · S4,(r+[i,j,k])])

Hb r,[ijk] = Jb[i,j,k]([S1,r · S2,(r+[i,j,k])] + [S3,r · S4,(r+[i,j,k])])
Hc r,[ijk] = Jc[i,j,k]([S1,r · S3,(r+[i,j,k])] + [S2,r · S4,(r+[i,j,k])]

+[S3,r · S1,(r+[2+i,j,k])] + [S4,r · S2,(r+[2+i,j,k])])
Hd r,[ijk] = Jd[i,j,k]([S1,r · S4,(r+[i,j,k])] + [S3,r · S2,(r+[2+i,j,k])]) (2)
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Figure 4. The integrated counts from the antiferromagnetic peak (2.5, 0, 0), as the crystal is
passed through the phase transition. The data points in the temperature range 21–26 K have
been fitted to a power law expression indicated by the solid line; the dashed line is a guide to
the eye.

Table 2. The exchange constants are given along with the ions that they couple and the
interaction is described as ferromagnetic or antiferromagnetic; the vector [i, j, k] refers to the
magnetic unit cell.

Exchange Ions linked Type

Ja[ijk] Cu 1→ Cu 1[i, j, k] ferromagnetic
Cu 2→ Cu 2[i, j, k]
Cu 3→ Cu 3[i, j, k]
Cu 4→ Cu 4[i, j, k]

Jb[ijk] Cu 1→ Cu 2[i, j, k] ferromagnetic
Cu 3→ Cu 4[i, j, k]

Jc[ijk] Cu 1→ Cu 3[i, j, k] antiferromagnetic
Cu 2→ Cu 4[i, j, k]
Cu 3→ Cu 1[2+ i, j, k]
Cu 4→ Cu 2[2+ i, j, k]

Jd[ijk] Cu 1→ Cu 4[i, j, k] antiferromagnetic
Cu 3→ Cu 2[2+ i, j, k]

whereS1,r is the spin operator of the Cu 1 ion in therth magnetic unit cell etc. For this
Hamiltonian ferromagnetic exchange constants have negative values while antiferromagnetic
exchange constants have positive values.

The excitations in CuWO4 were modelled using spin-wave theory since this theory
usually provides a good description of the excitations in three-dimensionally ordered
magnets and predicts well defined energy modes like those observed in CuWO4. The
spin-wave calculation is described in the appendix; a general solution is found which can
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Figure 5. Constant-wavevector scans at (0.5, 0, 0) above and belowTN at 22 and 26 K. In the
22 K scan a mode is found at an energyE = 0.94 meV above the elastic Bragg peak. By 26 K
only quasi-elastic scattering centred atE = 0.0 meV is found (maximum 182 counts s−1).

deal with any number and combination of exchange interactions. Two sets of doubly
degenerate modes are predicted by the theory: this is a direct consequence of having
four magnetic ions in each magnetic unit cell in the same way that the number of
phonon branches is related to the number of atoms in the unit cell. By analogy with
the phonon case the lower mode is called the ‘acoustic’ mode and the upper mode the
‘optic’ mode.

The theoretical expressions for the spin-wave energies given by equations (A9), (A10)
and (A5) were fitted to the measured dispersion relations by varying the values of the
exchange constants. Only the acoustic mode of the larger crystallite was used in the fitting
because this mode could be unambiguously followed up from the zone centre as described
in section 3. For some of the other peaks observed it was unclear which crystallite they
originated from. We also decided to restrict the exchange paths to those for which the
separation between the copper ions was less than 7Å as it is very unusual for exchange
interactions to be significant for distances greater than this in an insulating crystal like
CuWO4. This condition left us with 14 remaining interactions. In order to further simplify
the problem different planes in reciprocal space were fitted separately. For example the
data in thea∗–b∗ plane were fitted separately from those in thea∗–c∗ plane, so that there
were half the number of independent parameters in any one fit.
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Figure 6. The energy gap at (0.5, 0, 0) as a function of temperature belowTN . The gap size was
extracted from constant-wavevector scans at the zone centre. The top right-hand graph shows
the behaviour of the integrated intensity from the antiferromagnetic Bragg peak at (2.5, 0, 0)
over the same temperature region.

In addition to calculating the energies of the magnon modes their intensities were also
calculated as functions of wavevector. The intensities are given by the neutron scattering
cross-section

d2σ

d� dE′ ∝ k′

k

∫ +∞

−∞

∑
ε,γ

(δεγ − Q̂εQ̂γ )
∑
p,r

∑
p′,r′

exp(−iQ · (r + dp − r′ − dp′))

×〈〈Sε
p,rS

γ

p′,r′(t)〉〉 exp(−iωt) dt (3)

where the sum overp, r is over thepth ion in therth magnetic cell and the sum overε, γ

is over the co-ordinatex, y, z. The symbolk represents the initial wavevectork′, the final
wavevector and the wavevector transfer is given byQ = k − k′, while the vectord(p) is
the position of thepth Cu ion within the magnetic unit cell. The intensity calculation is
performed by expressing the spin operatorsSε

p,r andS
γ

p′,r′(t) in terms of the normal mode
operators for CuWO4. This calculation is outlined in the appendix.

Table 3. The exchange constants and their strengths for both models.

Model 1 Model 2

Exchange Strength (meV) Exchange Strength (meV)

Jd[−2,1,0] 33.26 Jd[0,0,−1] 31.27
Jd[0,0,0] 8.34 Jd[−2,1,−1] 9.01
Jb[0,1,0] −0.52 Jb[0,1,0] −3.09
Jb[0,0,−1] −2.96 Jb[0,0,−1] −0.55
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Figure 7. The exchange paths associated with three different exchange constants are drawn on
the a–b plane.

The process of fitting the exchange interactions and checking the intensities of the
various models against the observed intensities led to two models which provide equally
good fits to the data (see table 3). Both models consist of weakly coupled zig-zag
dimerized chains running in the [2, −1, 0] direction. The chains occupy alternating planes
perpendicular to thec∗ axis and are weakly coupled both within the planes and between
the planes. Figure 8 shows the exchange paths of both models projected onto thea–b
and a–c planes. Their projections are similar in thea–b plane but in thea–c plane the
chains occupy different alternating layers. In model 1 the exchange interactions connect
Cu ions within the magnetic cell whereas in model 2 the Cu ions in consecutive magnetic
cells are connected. Figure 9(a) and 9(b) shows the dimerized chains for both models
over several unit cells, with the double lines representing the strong intrachain exchange
interaction, and the single lines the weak intrachain interaction. The reason why it is
impossible to distinguish between these models from the excitations is because they are
so similar. The only significant difference is that the chains in the two models occupy
different alternating layers in thec direction; however the excitations are not affected by
this.

In both models the larger intrachain exchangeJd[−2,1,0] or Jd[0,0,−1] is about 32 meV
(where in the Hamiltonian, energy terms are given byH = ∑

1,1′ J1,1′S1 · S1′ andS = 1
2)

and the weaker intrachain exchangeJd[0,0,0] or Jd[−2,1,−1] is about 8.5 meV. The interchain
exchange interactions are about 2 meV in strength, however it is impossible to pinpoint
which exchanges these are from the magnetic excitations because there are so many possible
exchanges which would be equally satisfactory. Figure 3(a)–(e) shows the fits to the data;
the calculation has been performed for both crystallites. In spite of the fact that only the
acoustic mode of the larger crystallite was fitted, the calculated dispersions of the optic
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Figure 8. The projections onto thea–b plane and thea–c plane of the exchange interactions
for the two models. On thea–b plane the models are very similar but on thea–c plane they
occupy different alternating layers.

branch and the modes of the smaller crystallite (taking into account its different orientation)
are found to correspond in frequency to the other peaks in the scattering data.

The intensities of the excitations were calculated using the fitted exchange constants;
these are plotted with the fits in figure 3(a)–3(d) and provide an explanation as to why
modes were observed at some points in reciprocal space and not others. For example in
figure 3(d) the calculated intensity of the acoustic mode of the larger crystallite is predicted
to be large aroundx = 0.0 and to decrease asx increases, while the optic mode of the larger
crystallite is initially small but grows in intensity to be larger than the acoustic mode at the
zone boundary. This explains why the acoustic mode was observed in the measurements
from x = 0.0 to 0.3 but not for higherx, while the optic mode was observed forx = 0.25
to 0.5 but not for low values ofx. In figure 3(a) the only mode not to be observed was
the optic mode of the smaller crystallite: this can be explained by looking at the calculated
intensities. Unfortunately in the region close tox = 0.0 where it may have been possible to
observe this mode the measurements were not made at sufficiently high energies to detect
it. In figure 3(e) the acoustic mode of the smaller crystallite was not found in the region
x = −0.2 to x = −0.4 where it is predicted to be strong. This is because the intensity of the
acoustic mode of the larger crystallite is much stronger as indicated on the intensity graph;
however constant-wavevector scans atx = −0.2 andx = −0.4 are somewhat asymmetric
in line-shape probably due to scattering from this mode.

Finally, in order to verify the idea that CuWO4 consists of dimerized chains, a model
of uncoupled alternating chains was compared to the data. This model produces just one
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Figure 9. The intrachain exchange paths for the two models are shown over several chemical
unit cells.

mode per crystallite because with the chains unconnected the neutrons no longer see the
phase difference between them. This dispersion was fitted to the measured acoustic mode
and the best fit resulted in a strong intrachain exchange interaction of 33.9 meV and a
weak intrachain interaction of 9.6 meV; these values are similar to those obtained in the
model with coupled chains. The fits, plotted in figure 3(a)–(d), closely follow the measured
acoustic mode when the wavevector has a component in the chain direction, whereas when
the wavevector is perpendicular to the chain direction the dispersion is zero for this model.

Some insight into why CuWO4 consists of weakly coupled dimerized chains can be
gained by considering the crystal structure. None of the possible exchange interactions in
CuWO4 could on their own magnetically couple together all the Cu ions either three dimen-
sionally or two dimensionally, and only exchanges of the typeJc[i,j,k] are capable of linking
all the Cu ions in one dimension. In general a single exchange interaction would join Cu
ions into pairs and these dimers would be magnetically isolated from each other: several
different exchange interactions are needed for the Cu ions to be linked in either one, two or
three dimensions. This feature of CuWO4 is a direct consequence of the low crystal sym-
metry and the fact that it has four Cu ions in the magnetic unit cell. The three-dimensional
ordering in CuWO4 must therefore be produced by several different exchange interactions
with different magnitudes and for this reason it is not suprising that the crystal is dimerized.
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Figure 9. (Continued)

CuWO4 is different from the other members of the tungstate family e.g. MnWO4 and
CoWO4 for two reasons: firstly it is the only one to show low-dimensional magnetic
behaviour and secondly it exhibits a strong Jahn–Teller distortion. The Jahn–Teller distortion
in CuWO4 causes the angle between thea andb axes to be changed from 90 to 82.91◦: as
a result, the diagonal distancea + b is greater than the distancea − b. It is interesting to
note that the antiferromagnetic chains run in the [2, −1, 0] direction, which is close to the
direction of the shorter diagonal. The other tungstates, which do not have this distortion,
also do not exhibit low-dimensional magnetism, which suggests that these two features of
CuWO4 are linked.

5. Discussion

The previous work on CuWO4 is correct in predicting that magnetically it consists of
chains with alternating exchange interactions; however, our results disagree with both the
values of the exchange constants suggested by Doumercet al [5] and the exchange paths
of Forsythet al [7]. Doumercet al arrive at the idea of alternating chains by examining
the crystal structure and measuring the susceptibility of a powdered sample. Theb–c plane
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of CuWO4 consists of zig-zag chains of CuO6 octahedra separated from one another by
chains of WO6 octahedra. Doumercet al suggested that one-dimensional magnetism would
exist along these chains and that the exchange constants would alternate since successive
coppers in the chains are non-equivalent as there are two coppers in each structural unit
cell. We now know that these assumptions are incorrect: the one-dimensional chains lie
not in theb–c plane but in thea–b plane. From their EPR measurements, Doumercet al
found the transition temperature to be 24 K and their inverse susceptibility data showed
a broad minimum at 90 K corresponding to short-range order, which they assigned to the
correlations within the alternating chains. They compared their data to the work of Duffy
and Barr [6], whose exact numerical simulations of finite alternating chains of up to ten
spins were extrapolated to predict the susceptibility of infinite chains. The values of the
intrachain parameters given by Doumercet al are 11.56 and 9.25 meV whereas we obtain
32 and 8.5 meV.

Forsyth et al [7] examined the structure of CuWO4 and found a specific set of
exchanges they believed would be responsible for the magnetic features. They assumed that
antiferromagnetism was carried by the triple exchange path Cu–O–W–O–Cu first proposed
by Mays [14] to account for the magnetic structure of LiMnPO4. By measuring the angles
at the intervening oxygens and the bond lengths they suggested three paths which combined
together would produce alternating zig-zag chains in thec direction weakly coupled in thea
direction. These exchange paths do not connect all the Cu ions and no coupling is predicted
in the b direction. In contrast, our data show three-dimensional ordering, where the zone
boundary excitation energy is large in both thea andb directions at 17 meV and is weaker
in thec direction at 8 meV, immediately contradicting these exchange paths. We now know
that the chain direction is [2, −1, 0], not [0, 0, 1] as Forsyth predicts. We conclude that for
a complicated structure like that of CuWO4 where the symmetry is triclinic the usual rules
for predicting the triple exchange paths are not well obeyed and that it is neccessary to
measure the spin-wave spectra to deduce the exchange constants.

As yet there is no complete theory of one-dimensional alternating spin-1
2 chains though

there are numerous approximate theories [15–18] and experiments have been performed on
the spin–Peierls system CuGeO3. In its spin–Peierls phase CuGeO3 consists of alternating
chains in thec direction with exchange values 11.5 and 9.9 meV [18]. The chains are
weakly coupled in theb direction by an exchange of 6% of that of the intrachain values
and the exchange in thea direction is 0.3% of the intrachain exchanges: therefore the
system is described as quasi-one-dimensional. A feature of CuGeO3 is that it does not have
a magnetically ordered phase [19]. One-dimensional spin-1

2 antiferromagnets are predicted
never to order as there are not enough nearest neighbours per spin to stabilize the system.
In practice, however, most crystals displaying one-dimensional behaviour do order at low
enough temperatures because there is always some interchain coupling. The excitations of
CuGeO3 consist of a strong single mode forming the lower bound to a continuum [3]: this
continuum is also a characteristic of one-dimensional spin-1

2 magnets. Finally CuGeO3 has
an energy gap at its zone centre [20, 21], a feature which has been predicted by theories of
alternating chains and is a direct consequence of the dimerization.

CuWO4 in contrast to CuGeO3 does have a three-dimensionally ordered phase but the
ordering temperature of 24 K is low compared to the intrachain exchange constants. This
reflects the small magnitude of the interchain coupling responsible for the ordering. Our
measurements have mostly concentrated on studying the ordered phase belowTN and not the
disordered phase where CuGeO3 has been investigated; however our constant-wavevector
scans at the zone centre to measure the energy gap were performed both above and below
TN . The origin of the energy gap belowTN is unclear in that, while a gap is expected
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aboveTN due to quantum effects, this should go to zero in the ordered phase if there is no
source of anisotropy. Possible causes of the energy gap are the dipole–dipole interactions
between spins, or some intrinsic anisotropy, for example spin–orbit coupling if there is any
residual unquenched orbital moment. The dipole–dipole interaction energy is proportional
to the magnetization squared. If this interaction were the cause of the energy gap, the
gap would drop to zero atTN following the same function of temperature as the magnetic
scattering intensity since the magnetic intensity is also proportional to the magnetization
squared. Figures 4 and 6 demonstrate that this not the case; in addition calculations show
that the dipole–dipole interaction energy is less than 0.05 meV, ruling out this interaction
as the main cause of the energy gap.

Above TN zone centre scans show a band of scattering that is wide in energy and is
centred atE = 0.0 meV; as no energy gap is visible we can conclude that either there is
no gap in the ordered phase or that the gap is small and is obscured by the quasi-elastic
scattering. If the system turns out to have excitations like CuGeO3 we would expect an
energy gap and a continuum at the antiferromagnetic lattice points aboveTN . The continuum
would be occupied at these temperatures if the gap were less than 2 meV in size. If this is
the case, a possible explanation for the broad energy band atE = 0.0 meV is that it results
from scattering within a continuum. Figure 5 supports this argument: it shows a constant-
wavevector zone centre scan at 26 K; the solid line is a simulation of the expected scattering
from a well defined, spin-wave mode with no energy gap. This scattering is offset from
E = 0.0 meV because of the effect of the vertical resolution as explained in section 3. The
measured scattering clearly does not have this offset, showing that it cannot be produced by
a well defined mode. Our brief exploration of the excitations aboveTN revealed a dispersion
similar to the acoustic mode belowTN but less well defined and of lower intensity again:
one possibility is that some of the intensity has gone into a continuum.

Future work on CuWO4 should first be to find out which of the two alternative sets of
exchanges described in section 4 exists in the crystal and to try to understand the exchange
mechanism. It would also be interesting to perform more measurements on CuWO4 to find
out exactly what happens to the energy gap and to explore the excitations aboveTN .

6. Summary

In this paper the magnetic excitations of CuWO4 have been studied in some detail by the
technique of inelastic neutron scattering using a triple-axis spectrometer. Measurements
were mostly carried out in the three-dimensionally ordered phase and revealed two well
defined modes per crystallite; these were mapped out in a large number of high-symmetry
directions. Fitting spin-wave theory to the dispersions leads to two different models which
provide equally good fits to the data: both models consist of weakly coupled alternating
chains in the [2, −1, 0] direction where the intrachain exchange constants are 32 and
8.5 meV. The theoretical intensities of the dispersions using these exchange interactions
explain why modes are observed at some wavevectors and not others. CuWO4 is found to
have an energy gap at the zone centre in its ordered phase and constant-wavevector scans
suggest the existence of a continuum of excitations aboveTN .
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Appendix

This appendix describes the calculation of the magnetic excitations in the ordered phase of
CuWO4 using spin-wave theory. The solution to the Hamiltonian given in equations (1)
and (2) is found. This solution can accommodate any possible set of exchange interactions.
Having found the spin-wave energies the method to compute the intensities of the excitations
is outlined.

In the first stage of the spin-wave calculation the spin operators in the Hamiltonian
undergo two transformations. The first transformation is to the spin deviation operators
where a spin deviation exists on a spin if its value ofSz differs from that in its assumed
Néel state. The transformation can be written as follows.

Sz
p,r = ±(S − a+

p,rap,r) Sx
p,r =

√
(S/2)(ap,r + a+

p,r)

Sy
p,r = ∓i

√
(S/2)(ap,r − a+

p,r) (A1)

wherep = 1–4 is the index over the Cu sites and the upper sign is taken for sites 1 and
2 and the lower sign for sites 3 and 4. The operatora+

p,r(ap,r) creates (destroys) a spin
deviation on the spin of the Cu ion of thepth type in therth magnetic unit cell.

The second transformation of the Hamiltonian is to the Fourier transform of the spin
deviation operators and is given by

a+
p,r = 1√

N

∑
Q

A+
p,Q exp(±iQ(r + d(p)))

ap,r = 1√
N

∑
Q

Ap,Q exp(∓iQ(r + d(p))) (A2)

where againp = 1–4 is the index over the Cu sites, the upper sign being taken for sites 1
and 2 and the lower sign for sites 3 and 4. The operatorA+

p,Q(Ap,Q) is the Fourier transform
of the spin deviation creation (destruction) operator of sublatticep at wavevectorQ, and
d(p) is the position of thepth Cu within the magnetic unit cell.

After these transformations the Hamiltonian can be written in the form

H =
∑
Q

HQ. (A3)

If we just consider those terms that are quadratic in the operatorsAQ and ignore higher-order
terms theHQ are

HQ = 1
2αQ,t,t ′A

+
t,QA+

t ′,Q + 1
2α∗

Q,t,t ′At,QAt ′,Q + βQ,t,t ′A
+
t,QAt ′,Q (A4)

where for CuWO4 the αQt,t ′ andβQ,t,t ′ are given by

βQ,1,1 = βQ,2,2 = βQ,3,3 = βQ,4,4 = S
∑
i,j,k

(2Ja[i,j,k](cos(Q · [i, j, k]) − 1)

−Jb[i,j,k] + 2Jc[i,j,k] + Jd[i,j,k])
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βQ,1,2 = βQ,2,1
∗βQ,3,4

∗ = βQ,4,3 = S
∑
i,j,k

Jb[i,j,k] exp(−iQ · (d(2) + [i, j, k] − d(1)))

αQ,1,3 = αQ,3,1 = αQ,2,4 = αQ,4,2 = 2S
∑
i,j,k

Jc[i,j,k] cos(Q · (d(3) + [i, j, k] − d(1)))

αQ,2,3 = αQ,3,2 = α∗
Q1,4 = α∗

Q,4,1 = S
∑
i,j,k

Jd[i,j,k] exp(Q · (d(2) + [i, j, k] − d(3))). (A5)

Vonsovskii [22] describes a general method of solving this Hamiltonian by introducing
a third transformation to diagonalize it. This transformation is

A−
t,Q =

∑
s

(ζ−
s,Qut,s,Q + ζ+

s,Qv∗
t,s,Q) A+

t,Q =
∑

s

(ζ+
s,Qu∗

t,s,Q + ζ−
s,Qvt,s,Q) (A6)

whereζ+
s,Q(ζ−

s,Q) is the creation (annihilation) operator of thesth magnon mode. Theut,s,Q

andvt,s,Q in equation (A6) are related to each other and the energies by the following set
of homogeneous equations:∑

t ′
((βQ,t,t ′ − EQ,sδt,t ′)ut ′,s,Q + αQ,t,t ′vt ′,s,Q) = 0∑

t ′
(α∗

Q,t,t ′ut ′,s,Q + (β∗
Q,t,t ′ + EQ,sδt,t ′)vt ′,s,Q) = 0 (A7)

whereEQ,s is the energy of thesth magnon mode and theut ′,s,Q andvt ′,s,Q are subject to
the following conditions:∑

t

(ut,s,Qu∗
t,s ′,Q − vt,s,Qv∗

t,s ′,Q) = δs,s ′∑
t

(ut,s,Qvt,s ′,Q − ut,s ′,Qvt,s,Q) = 0. (A8)

The equations (A7) form a matrix which can be diagonalized to find the magnon eigenvalues
EQ,s and the eigenvectors{ut,s,Q, vt,s,Q}. For CuWO4 we find that there are two sets of
doubly degenerate modes with energies given by

EQ,1 =
√

(C1
Q − C2

Q) EQ,2 =
√

(C1
Q + C2

Q) (A9)

where the quantitiesC1
Q andC2

Q are

C1
Q = β2

Q,1,1 − αQ,4,1α
∗
Q,4,1 + βQ,1,2β

∗
Q,1,2 − α2

Q,1,3

C2
Q = (4β2

Q,1,1βQ,1,2β
∗
Q,1,2 − 2βQ,1,2β

∗
Q,1,2αQ,4,1α

∗
Q,4,1 + 4α2

Q,1,3αQ,4,1α
∗
Q,4,1

+(α∗
Q,4,1βQ,1,2)

2 + (αQ,4,1β
∗
Q,1,2)

2 − 4βQ,1,1α
∗
Q,4,1αQ,1,3βQ,1,2

−4βQ,1,1αQ,4,1αQ,1,3βQ,1,2
2)1/2. (A10)

The intensity of these excitations can also be calculated. The intensity is given by the
neutron scattering cross-section equation (3). To perform the calculation the spin operators
in equation (3) are written in terms of the magnon creation and annihilation operators for
CuWO4. To do this theSε

p,r andS
γ

p′,r′(t) must undergo the same transformations that were
used in the energy calculation: these transformations are given by equations (A1), (A2) and
(A6). The neutron scattering cross-section can then be expressed in terms of the eigenvectors
ut,s,Q andvt,s,Q which were obtained above. This method follows that of Lovesey [23] but
is extended for the case of four magnetic ions in the magnetic unit cell.
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